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We extend the numerical methods of a previous paper to the study of the a-effect 
in a turbulent plasma. In  the frozen-turbulence case the a-effect vanishes for zero 
molecular diffusivity. The value of a is, however, found to depend very sensitively on 
the molecular diffusivity. The same is true for the turbulent magnetic diffusivity /3. 
The theoretical predictions of the first-order smoothing and the Markovian ap- 
proximations are well satisfied in the appropriate limits, for both a and /3. 

1. Introduction 
The problem of calculating the a-effect (Krause & Riidler 1980; Moffatt 1978) and 

the magnetic diffusivity from the statistical properties of a turbulent plasma, is 
largely unsolved in the important limit of large magnetic Reynolds number. In this 
paper we report on a numerical simulation of the process along the lines of a previous 
investigation by Kraichnan (1976). Our results for the a-effect confirm his where they 
overlap. However, we were able to extend significantly the time interval over which 
the simulation could be carried out. We were also able to include the effect of 
molecular diffusion (finite conductivity) in our calculation. The simulation, which was 
performed on the ICL-DAP a t  Queen Mary College (London), follows closely the 
method used in a previous paper (Drummond, Duane & Horgan 1984) which 
investigated turbulent diffusion of a scalar field. 

In  $2 we describ? the velocity ensembles we used. In $3 we discuss the extension 
of the integration technique for stochastic differential equations required for calcu- 
lating the a-parameter and the magnetic diffusivity, and in $4 we briefly review the 
numerical integration procedure. 

The results for the important case of frozen turbulence with and without molecular 
diffusivity are presented in $5. Non-frozen turbulence with and without molecular 
diffusivity is analysed in $6. A discussion of these results is presented in $7 .  

2. Velocity ensemble 

(Drummond et al. 1984). A typical velocity field has the form 
The velocity field is constructed in the same way as in our previous paper 

N 

n-1 
u(x,t) = A  E { (en C O S @ ~ - X , A & ,  sin@JAkn cos(k;x+w,t) 

+(x, cos$,+CnA&, sin@,)Ak, sin(k;x+w,t)}. (2.1) 

Here {en} and (x,} are independent random variables distributed uniformly over the 
unit sphere, {w,} are independent Gaussian random variables with variance w i .  We 
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give the {@,} a common value $, which in this paper is set to in, yielding maximum 
helicity. This form guarantees that the flow is incompressible and the distribution 
of parameters ensures that the turbulence is homogeneous and isotropic. 

For the {k,} we consider two distributions. The first is the S-shell model, in which 
each k, is distributed uniformly over a sphere of radius k,, and the second, the 
Gaussian model, in which each component of k, has a Gaussian distribution with 
variance k;. In each case we choose A so that the mean-square velocity is ui. 

For the S-shell we have 
(2 .2)  

(2 .3)  

A = -  0 
( 2 3  io 

(u2)  = u;, ((V A u ) ~ )  = u; k;, (u*V A u )  = ui k, sin $. and 

For the Gaussian we have 
(2 .4)  

and (U2> = u;, ((VAu)’) = 5k;u;,  ( u . V A u )  = u i k ,  sin$. (2.5) 

The velocity correlation functions are, for the &shell, 

(u (x ,  t ) -u(x’ ,  t ’ ) )  = u; 

and for the Gaussian 

( ~ ( x ,  t )*u(x’ ,  t ‘ ) )  = 3.4(3-kir2) e-:kfr* e*:(t-t’)*, (2 .7)  

where r = Ix--’I. 
Note that the S-shell correlation function has a zero at  r = n / k ,  and the Gaussian 

at r = 1/3 /k , .  Since we use the same k, (=  6 )  in both simulations we see from a 
consideration of the variances of the wavevectors, or from the positions of these zeros 
that the spatial scales for the two models differ by a factor of roughly 4 3  = 1.74. 
The helicity-correlation zeros occur a t  r = n / k o  again for the S-shell and r = 1.51/k0 
for the Gaussian, in this case a factor of roughly 2 .  Since we have set u; = 3 in both 
models a corresponding factor of 2 is implied for their relative time scales. 

These general dimensional considerations are mirrored very accurately in the 
results, showing that both models, as might be expected, behave in much the same 
way. We feel that this consistency between models which are analytically different 
enhances confidence in our numerical procedures. 

3. Stochastic differential equations for a(t)  and p(t) 

The formulae for computing a(t)  and P( t )  in a turbulent plasma have been given 
by Moffatt (1978) for the case of zero molecular diffusivity. They are equivalent to 
the following equations : 

40 = *ijk(Ui(X(t), t )  ykw; (3 .1)  
and 

B(t) = 4 t )  (r(t)> -Mu,(m)?  t )  Y k V )  WkjW +i(u , (X( t ) ,  t )  U,(t) W k k ( t ) ) ?  (3 .2)  

where Y(t) = X ( t ) - a  

and 8 = U ( X ,  t ) ,  X(O)  = a, (3.3)  
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The effect of molecular diffusivity K can be introduced by altering (3.3) to 

2 = U(X, t )  + o ( t ) ,  (3.6) 

where v ( t )  is a randomly fluctuating velocity with a correlation function 

( ‘ U i ( t ) V j ( t ’ ) )  = 2KSi16(t-t’). (3.7) 

The matrix w f k  is defined by (3.4) but its geometrical significance is revealed by 
noting that 

In the case of non-zero molecular diffusivity the fluctuating velocity function v ( t )  is 
taken as fixed during the differentiation. All other equations can be carried over 
unchanged provided the averaging procedure indicated by the angular brackets is 
extended to include averages over the molecular fluctuations represented by u(t ) .  A 
similar approach has been used by Molchanov, Ruzmaikin 6 Sokoloff (1984). These 
molecular fluctuations, of course, have their effect on W(t) ,  a(t) and P(t) ,  through 
their implicit dependence on X(t) .  

For future reference we note that these results provide two opportunities for 
evaluating a(t), namely directly through (3.1) and indirectly as the slope of ( ~ ( t ) ) ,  
since 

( y ( t ) )  = dt’a(t’). (3.8) s,” 
It is a further check on our simulation that these two methods yield consistent results. 

4. Numerical integration procedure 
The generalized Rung-Kutta method for integrating the stochastic differential 

equation (3.6) of the previous section was set out in our previous paper (Drummond 
et al. 1984). For completeness we briefly recapitulate the method here and describe 
the extension necessary to deal with (3.4) and (3.5). We subsequently discovered that 
these techniques have also been developed by Greenside and Helfand (Helfand 1979; 
Greenside & Helfand 1981). 

The nth-order RungeKutta scheme for updating variables over a time step t to 
t + At requires the introduction of a sequence of positions (x,, xl, . . . , x,) and times 
(t,,t,, , . . , t n )  where x, = X(t )  and x, = X( t+At ) ,  to = t and t ,  = t + A t ,  the remaining 
times being chosen so that 

and the points so that 
ti = t+y iA t ,  (4.1) 

i 

where i = 1,2, . . . , n and qi are a set of independent random variables with zero mean 
and unit variance. The coefficients a$,, Pil and yi are chosen as explained in our 
previous paper (Drummond et al. 1984). 

In  order to integrate a set of quantities Fa obeying differential equations 

(4.5) 
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over the time interval t to t +At  we introduce a sequence Fasi i = 0,1, ..., n, where 
Fa,o = F,(t) ,  Fa,n = Fa(t+At)  and 

i 

I-1 
FU,i = X aij VavjAt,  (4.6) 

with V,,j = V, (q - l ,  +I> t j - J ,  (4.7) 
the coefficients aij being the same as above. 

It is clear that the ten quantities Wij, y satisfy (see (3.4) and (3.5)) equations of 
the form of (4.5). We apply a third-order procedure (n = 3) to these equations which 
yields an update which is correct to O(At4) and a current estimate with a systematic 
error O(Ata) .  These systematic errors remain entirely negligible for practical choices 
of At. 

More serious are the statistical errors which increase exponentially with time. 
However by an appropriately large computing effort we were able to  control these 
errors and obtain significant results over time intervals roughly three times those 
covered in Kraichnan’s calculation. This proved to be sufficient to reveal convincingly 
the asymptotic behaviour of a(t) and P ( t )  even in the most difficult case of frozen 
turbulence. 

I n  general, using the third-order RungeKutta  procedure, two updating steps per 
unit of time was sufficiently accurate, except for K 2 0.4 for which four steps per unit 
of time were required, to remove systematic errors. The unit of time was chosen to 
be the lesser of the eddy-circulation time and the velocity-decorrelation time. In  fact 
the results are insensitive to  reducing the time step further. 

5. Frozen turbulence 
Frozen turbulence (wo = 0) is the limiting case most difficult to deal with 

theoretically. It also represents the most challenging case for simulation since, for 
vanishing molecular diffusivity K ,  important correlations persist over many eddy- 
circulation periods. I n  what follows we have set wo = for reasons of computational 
convenience. This represents a timescale considerably longer than any involved in 
the simulation. 

The results for the &shell a t  zero K are shown in figure 1 ( a )  while figures 1 ( b )  and 
( c )  exhibit the results for a range of values of K .  The corresponding results for the 
Gaussian model appear in figure 2 (a)-(c). Allowing for the difference in scale discussed 
in $2, the two models clearly show similar behaviour. It should be noted that the 
results in figure 1 ( a )  confirm those of Kraichnan (1976) up to  the end of his time range, 
which is indicated by the arrow a t  1 = 4. 

The most striking feature of the results is the manner in which a(t) approaches 
zero for large times when molecular diffusivity is absent. A second important feature 
is the sensitivity of the asymptotic value of a to  the presence of molecular diffusivity. 
This is exhibited in figures 3 ( a )  and ( b ) .  The turbulent diffusivities of the two models 
(for K = 0) are respectively 0.4 and 0.2. We see then that the a-parameter has reached 
half its maximum a t  values of K only 5 yo of the corresponding turbulent diffusivities. 
Indeed the maximum value is reached when K is still at the 25 % level. 

When K is comparable to  the turbulent diffusivity a begins to  conform to the 
l/K-behaviour predicted by the first-order smoothing approximation (Moffatt 1978, 
equations 7.41, 7.56 and 7.78). For both models this gives 

C 
a = -- (1 + O ( K - 2 ) ) ,  (5.1) 

K 
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FIGURE 1 (a ,b) .  For caption see p. 430. 

where, for the S-shell and the Gaussian respectively, C takes the values 0.167 and 
0.088. Figures 4(a)  and (b) illustrate the approach of a to its predicted asymptotic 
form and confirm the O ( K - ~ )  fractional correction. 

In dealing with values of K x 1 we run into the small systematic discrepancies 
between values of a derived directly and those from the slope of ( y ( t ) ) .  The 
discrepancy, which appears to behave as O ( K ~  At3), is not large and is easily controlled 
by reducing At by a factor of 2 in the numerical integration procedure. In  fact the 
indirect method is the less sensitive to At. 

In  figures 5(a) and (b) we exhibit the behaviour of P(t) for zero K .  Over the initial 
time, t'< 4, it has the same behaviour as found by Kraichnan (1976). (Our values, 
however, are lower by a factor of two.) On extending the time interval we see that 
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for various values of diffusivity. K values are (a) 0; (a) 0.01 (a), 0.03 ( x ) ,  0.04 (O), 0.08 (A); 
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simulation by Kraichnan (1976). Our results coincide with his up to this point. 
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FIGURE 2 ( a ) .  For caption see facing page. 

p continues to oscillate with slowly diminishing amplitude in the &shell and rather 
more rapidly diminishing amplitude in the Gaussian model. We feel that  it is plausible 
to conclude that p approaches zero at large times. 

The effect of giving K a non-zero value is illustrated in figures 5 (c) and (d ) ,  and in 
figures 6(a) and ( b )  we plot the asymptotic values of /3 against K omitting some points 
corresponding to  low-K where it was difficult to pick out an asymptotic value. For 
K >, 1 the values of /3 are entirely consistent with the predictions of first-order 
smoothing for both models (Moffatt 1978, equations 7.41, 7.56 and 7.98). 
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I n  real turbulence we expect the decorrelation time to bc comparablc to thc 

eddy-circulation time (w, x uo ko). We examined, therefore. the behaviour of a(f) for 
w, = 10 and various values of K.  Even for K = 0, a settled down to an asymptotic 
value within two eddy-circulation periods. This is cwnsistent, with Kra ichan  (1 976). 
In  figures 7 ( a )  and (b) we show the asymptotic. value of a as rt function of K .  Notc 
that for large K thc results again approach thc predictcd ('urvc of thc first-order 
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smoothing approximation. The same holds for the asymptotic values of p illustrated 
in figures 8 ( a )  and (b) (Moffatt 1978, equations 7.41, 7.56, 7.78 and 7.98). 

We also investigated the dependence of a and p on wo for K = 0. The results for 
a appear in figures 9(a) and (b). The upper end of the range corresponds to the 
Markovian limit. Here theory suggests (Vainshtein 1970) that 

00 

a x -A d7 (u (x ,  7)'V A u(x ,  0)). 
6 -m 

d2 4 k O  
For the &shell this gives 

a=-- ~ 

6 ( w , , ) '  



434 

P 

0.2 

0.1 

0 

X 

- 

- 

A 

0 

-0.1 

0 

. x x , , . . . n . . . ? : t  o . ~ . . o o o o o o  ? ?  
O Z ~ ~ A A A A A A A A "  x a A A 4 3 ;  

8 i" 0 O ? Q  
A 

0 0  g O : : : : : : : : : 8 * ,  t o  

" 

0.5 1 .o 1.5 2.0 2.5 3.0 i 

- 

0 

X 

A 

0 

I .  T .  Drummond and R. R. Horgan 

(4 

0 

0 

X 

I 

P 

? 

f 

I 
P 

I I f 

P 

P 



Numerical simulation of the u-effect 

B 
0.1 

0 

B 

0.1 

0. 

435 

(a) 

@ I  
- 

? 
+ 

+ + 
0 

0 

l k  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 K 

(b) 

- 

0 
0 

€ + +  
0 

0 

0.2 

0.1 

0 

-a 
0.7 

0.6 

0.5 

0.4 

0.3 

0.2 
0.1 

4 

0, 

FIQURE 6. B(m) plotted against diffusivity K for k, = 6, w, = 
u: = 3, @ = in. (a)  &shell; (b )  Gaussian spectrum. 

- . a - 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 K 

- (4 

*4 . 

'' 

- 
- 
- 
- 

- 
, 

FIQURE 7. a(m)  plotted against diffusivity K for k, = 6, w, = 10, u: = 3, @ = an. (a)  8-shell; (b )  
Gaussian spectrum. The curves show the predictions of the first-order smoothing approximation. 



436 I .  T. Drummond and R. R. Horgan 

1 I 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 K 

(4 

, I  

0 

B 

0.2 

0.1 

0 

-a 

0.1 

- 
- 

( 1  

4 8 12 16 20 24 28 32 36 40 44 48 50 w,, 
\ 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0 1  I I 

0.1 0.2 0.3 0.4 0.5 0.6 K 

FIGURE 8. @(a) plotted against diffusivity K for k, = 6, w, = 10, u: = 3, $ = in. (a)  8-shell; ( b )  
Gaussian spectrum. The curves show the predictions of the first-order smoothing approximation. 

- 
- 
- + 
- 
- ' 
- 

\ 
-a 
0.7 r 

? 

0.3 

0.1 ' 
0 " " '  

4 8 12 16 20 28 36 44 52 60 68 76 84 92 100 wo 

FIGURE 9. a ( a )  plotted against w, for k, = 6, K = 0, ui = 3, + = in. (a)  8-shell; ( b )  Gaussian 
spectrum. The curves show the prediction in the Markovian approximation. 



Numerical simulation of the a-eSfect 

(a) 

437 

0 I 

4 8 12 16 20 24 28 32 36 40 44 48 50 wo 

4 8 12 20 28 36 44 52 60 68 76 84 92 100 wo 

FIGURE 10. P(m) plotted against wo for k, = 6, K = 0, u: = 3, $ = in. (a) &-shell; (a) Gaussian 
spectrum. The curves show the prediction in the Markovian approximation. 

and for the Gaussian 
a=-!(%). 

9 wo 

Clearly the graphs confirm these results for both models. 

to be given by the Markovian estimate of the eddy diffusivity for large oo, namely 
In figures lO(a) and (b) the results for /3 are exhibited. In this case /3 is expected 

That is 

i r m  

/3 = A J d~ (u(x ,  ~ ) * u ( x ,  0)). 
6 -m 

in both cases, a prediction confirmed by our results. 

7. Conclusions 
The most striking outcome from our simulation is the vanishing, in frozen 

turbulence, of the a-effect and turbulent magnetic diffusion, in the absence of 
molecular diffusivity. It is also interesting that both effects appear rapidly when K 

is given a non-zero value, rising to 50% of maximum while K is only 5% of the 
turbulent diffusivity (Drummond et al. 1984), and reaching maximum for K still at 
the 25 % level. At  maximum, K and the magnetic diffusivity are roughly equal. 

For large K ,  approximately twice the original turbulent diffusivity, both effects fit 
well with the predictions of the first-order smoothing approximation (Moffatt 1978). 

For non-frozen turbulence we find that both effects remain when K vanishes, and 
for short decorrelation times (0, large) the results fit well with the prediction of the 
Markovian approximation (Vainshtein 1970). When wo is comparable to u, k, both 
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a and are smooth monotonic decreasing functions of K and again approach the 
first-order smoothing approximation for large K .  

The statistics necessary to  achieve our results were, in general, the consequence 
of following roughly 1.5 x lo5 diffusing particle paths. For some points, such as a(t) 
and B(t) a t  low K and large times, it was necessary to increase the sample to  4.5 x lo5 
paths. 

It is interesting to  speculate on the relationship between our results for frozen 
turbulence and the discussion by Moffatt (1979) of the Bullard dynamo. He 
emphasizes the fact that the dynamo effect only occurs when the appropriate parts 
of the circuit have finite conductivity, thus permitting the magnetic-field transfer 
across the boundary necessary for flux build-up. This is paralleled by our result that 
molecular diffusion is necessary in frozen turbulence in order that  a(t)  may acquire 
a non-zero asymptotic value, that  is, that finite conductivity is necessary for the 
occurrence of the flux slippage essential for the dynamo effect. 

However, as discovered by Kraichnan (1976) and amply confirmed in our simulation, 
when the turbulence has a finite correlation time a non-vanishing a-effect occurs even 
in the absence of molecular diffusivity. This is consistent with the results of the 
Markovian approximation (Vainshtein 1970). Clearly the absence of flux slippage in 
an actual flow is no barrier to the operation of the dynamo mechanism for the mean 
field. In  fact, as is clear from an analysis of our stochastic equations and as is evident 
in the work of Molchanov et al. (1984), there is no flux slippage a t  a microscopic level 
even when molecular diffusivity is present. The randomly jumping particles still carry 
the field with them. These authors, in effect, use this fact to  show that when the 
decorrelation time is finite we should expect a continuously varying and non-vanishing 
a-effect even in the infinite-conductivity limit. Clearly what is needed is a convincing 
analysis of the frozen turbulence limit and how it  is affected by either molecular 
diffusivity or finite decorrelation time. We hope our results will provide a good test 
of any theoretical model in this area. 

I .  T. Drummond and R. R. Horgan 
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